Parvatibai Chowgule College of Arts and Science

Autonomous

BSc Semester End Examination, January 2022

Semester: I Subject: Chemistry (Core) Title: General Physical and Inorganic Chemistry **Duration: 2 Hours** Max. Marks: 45 **Instructions:** 1. All Questions Are Compulsory 2. Figures To The Right Indicate Full Marks 3. Use Of Calculators Is Allowed Physical constants: R=0.08314Lbar K⁻¹mol⁻¹, C= 3X10⁸m/sec, N=6.023X10²³ 1. Answer any 3 a (i) Find the maximum and minimum values of the function 3 $2x^3 - 21x^2 + 36x - 60$ (ii) Define unit cell. With the help of an appropriate figure explain 3 Triclinic crystal system. (iii) Write a short note on the graphical method to determine the order of 3 a reaction. (iv) Derive an expression $b = \frac{1}{3}Vc$ 3 2. Answer any 2 a (i) State the law of constancy of interfacial. Convert the following 3 Weiss indices (0,4,7) to Miller indices (ii) A second order reaction in which the concentration of both 3 reactants is same, is 13% complete in 720 seconds. How much more time will it take for the reaction to go to 67% completion. 3 b (i) Sketch the curve for the equation $y + x = x^2 + 4x$ (ii) Calculate the angle of reflection from the second order 100 plane of 3 a cubic crystal if the distance between the planes is 5.74 A⁰ and x rays of wavelength 0.154 nm are used. c (i) Evaluate to obtain the value of k 3 $\int_{0}^{\kappa} (x^2 + 3x - 2) dx = 12$

(ii) Derive an expression for the rate constant of zero order kinetics

3

3.		Answer any 2	
	a (i)	Explain dual nature of matter.	3
	(ii)	State and explain Pauli's Exclusion Principle.	3
	b (i)	What is hybridization? Give at least 3 different types of hybridization	3
	(ii)	Write a note on Sigma bond.	3
	c (i)	On the basis of hybridization, discuss the geometry of Methane.	3
	(ii)	Write down some of the limitations of Valence bond theory.	3
4.		Answer any 1	
	a (i)	Calculate the RMS and most probable velocity of Oxygen gas molecules at 23°C	5
	(ii)	Consider a reaction $A+B \rightarrow C$, Give detailed methodology for confirming the order of this reaction experimentally.	4
	(iii)	Explain with an example: Chemical bond	3
		OR	
	b (i)	Prove that the ratio of critical constants of a gas is independent of the type of gas	5
	(ii)	If reaction of Hydrolysis of ester is 15 % complete in 68 minutes, calculate the amount of product formed in 78 minutes.	4
	(iii)	On the basis of VSEPR explain the structure of Ammonia.	3
